equivariant estimate - traducción al ruso
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

equivariant estimate - traducción al ruso

Equivariant homology theory; Borel construction; Equivariant cohomology ring; Equivariant cohomogy ring; Equivariant characteristic class; Draft:Equivariant homology

equivariant estimate      

математика

эквивариантная оценка

equivariant cohomology         

математика

эквивариантная когомология

equivariant map         
  • The centroid of a triangle (where the three red segments meet) is equivariant under [[affine transformation]]s: the centroid of a transformed triangle is the same point as the transformation of the centroid of the triangle.
MAPS WHOSE DOMAIN AND CODOMAIN ARE ACTED ON BY THE SAME GROUP, AND THE FUNCTION COMMUTES
Intertwiner; Intertwining map; Equivariance; Intertwining operator; Equivariant; Equivariant morphism

математика

эквивариантное отображение

Definición

Estimator
·noun One who estimates or values; a valuer.

Wikipedia

Equivariant cohomology

In mathematics, equivariant cohomology (or Borel cohomology) is a cohomology theory from algebraic topology which applies to topological spaces with a group action. It can be viewed as a common generalization of group cohomology and an ordinary cohomology theory. Specifically, the equivariant cohomology ring of a space X {\displaystyle X} with action of a topological group G {\displaystyle G} is defined as the ordinary cohomology ring with coefficient ring Λ {\displaystyle \Lambda } of the homotopy quotient E G × G X {\displaystyle EG\times _{G}X} :

H G ( X ; Λ ) = H ( E G × G X ; Λ ) . {\displaystyle H_{G}^{*}(X;\Lambda )=H^{*}(EG\times _{G}X;\Lambda ).}

If G {\displaystyle G} is the trivial group, this is the ordinary cohomology ring of X {\displaystyle X} , whereas if X {\displaystyle X} is contractible, it reduces to the cohomology ring of the classifying space B G {\displaystyle BG} (that is, the group cohomology of G {\displaystyle G} when G is finite.) If G acts freely on X, then the canonical map E G × G X X / G {\displaystyle EG\times _{G}X\to X/G} is a homotopy equivalence and so one gets: H G ( X ; Λ ) = H ( X / G ; Λ ) . {\displaystyle H_{G}^{*}(X;\Lambda )=H^{*}(X/G;\Lambda ).}

¿Cómo se dice equivariant estimate en Ruso? Traducción de &#39equivariant estimate&#39 al Ruso